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Cyanobacteria are an integral part of Earth’s biogeochemical
cycles and a promising resource for the synthesis of renewable
bioproducts from atmospheric CO2. Growth and metabolism of
cyanobacteria are inherently tied to the diurnal rhythm of light
availability. As yet, however, insight into the stoichiometric and
energetic constraints of cyanobacterial diurnal growth is lim-
ited. Here, we develop a computational framework to investigate
the optimal allocation of cellular resources during diurnal pho-
totrophic growth using a genome-scale metabolic reconstruction
of the cyanobacterium Synechococcus elongatus PCC 7942. We for-
mulate phototrophic growth as an autocatalytic process and solve
the resulting time-dependent resource allocation problem using
constraint-based analysis. Based on a narrow and well-defined
set of parameters, our approach results in an ab initio prediction
of growth properties over a full diurnal cycle. The computational
model allows us to study the optimality of metabolite partition-
ing during diurnal growth. The cyclic pattern of glycogen accu-
mulation, an emergent property of the model, has timing char-
acteristics that are in qualitative agreement with experimental
findings. The approach presented here provides insight into the
time-dependent resource allocation problem of phototrophic diur-
nal growth and may serve as a general framework to assess the
optimality of metabolic strategies that evolved in phototrophic
organisms under diurnal conditions.

constraint-based analysis | whole-cell models | bioenergetics |
metabolism | circadian clock

Cyanobacterial photoautotrophic growth requires a highly
coordinated distribution of cellular resources to different

intracellular processes, including the de novo synthesis of pro-
teins, ribosomes, lipids, and other cellular components. For uni-
cellular organisms, the optimal allocation of limiting resources
is a key determinant of evolutionary fitness. Owing to the impor-
tance of cellular resource allocation for understanding evolution-
ary trade-offs in bacterial metabolism, the cellular “protein econ-
omy” and its implications for bacterial growth laws have been
studied extensively, albeit almost exclusively for heterotrophic
organisms under stationary environmental conditions (1–7). For
photoautotrophic organisms, including cyanobacteria, growth-
dependent resource allocation is further subject to diurnal light–
dark (LD) cycles that partition cellular metabolism into distinct
phases. Recent experimental results have demonstrated the rele-
vance of time-specific synthesis for cellular survival and growth
(8–10). Nonetheless, the implications and consequences of a
diurnal environment for the cellular resource allocation prob-
lem are insufficiently understood, and computational approaches
hitherto developed for heterotrophic growth are not straightfor-
wardly applicable to diurnal phototrophic growth (11).

Here, we propose a computational framework to quantita-
tively assess the optimality of diurnal resource allocation for pho-
totrophic growth. We are primarily interested in the stoichio-
metric and energetic constraints that shape the cellular protein
economy, that is, the relationship between the maximal growth
rate and the relative partitioning of metabolic, photosynthetic,
and ribosomal proteins during a full diurnal cycle. Going beyond

established constraint-based analysis (12–15), we aim to obtain an
ab initio prediction of emergent properties that arise from a nar-
row and well-defined set of parameters and assumptions about
cyanobacterial growth, and to contrast these emergent properties
with known and experimentally observed cellular behavior. To
this end, we assemble and numerically evaluate an autocatalytic
genome-scale model of cyanobacterial growth, based on a high-
quality metabolic reconstruction of the cyanobacterium Syne-
chococcus elongatus PCC 7942. Our model significantly improves
upon previous computational analyses of diurnal phototrophic
growth (14, 16–18) and takes recent developments in constraint-
based analysis into account (19–22). Our approach is closely
related to resource balance analysis (23, 24) and dynamic enzyme-
cost flux balance analysis (25), as well as integrated metabolism
and gene expression (ME) models (21, 26), but explicitly accounts
for the properties of diurnal phototrophic growth.

Using S. elongatus PCC 7942 as a model system, our starting
point is the fact that almost all cellular processes depend upon
the presence of catalytic compounds, typically enzymes and other
cellular macromolecules. The respective reaction rates are lim-
ited by the abundances of these catalytic compounds at any point
in time. Therefore, a self-consistent description of cyanobacterial
growth must take the synthesis of catalytic macromolecules into
account. De novo synthesis of cellular macromolecules increases
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the capacity of the respective reactions but happens at the
expense of available resources in terms of carbon precursors and
energy—the timing and amount of macromolecular synthesis can
therefore be described as a cellular resource allocation problem:
What is the amount and temporal order of intracellular synthe-
sis reactions that gives rise to maximal growth of a cyanobacte-
rial cell in a diurnal environment? To study the respective stoi-
chiometric and energetic constraints, we only require knowledge
about the stoichiometry of the reaction network, as provided by
a metabolic network reconstruction, as well as knowledge about
the stoichiometric composition and catalytic efficiency of the
macromolecules, quantities for which reasonable estimates exist.
In the following, we therefore seek to assess the emergent prop-
erties of phototrophic diurnal growth, based only on best a pri-
ori estimates of model parameters. Our key results include (i)
a computational framework that predicts the dynamics of intra-
cellular synthesis reactions of a cyanobacterium under diurnal
light conditions, (ii) model-derived emergent dynamics that are
in qualitative agreement with experimental observations about
metabolite partitioning during diurnal growth, (iii) an estimate
of the maximal rate of cyanobacterial phototrophic growth that
is close to observed experimental values, indicating a highly opti-
mized metabolism, and (iv) a predicted optimal timing of diurnal
glycogen accumulation that matches recent experimental obser-
vations and suggests a physiological role for circadian rhythms to
coordinate metabolism.

Model Construction
A Computational Model of Cyanobacterial Growth. We assem-
bled a constraint-based model of a self-replicating cyanobacte-
rial cell based on a genome-scale metabolic reconstruction of the
cyanobacterium S. elongatus PCC 7942. The genome-scale recon-
struction provides a manually curated stoichiometric description
of all metabolic reactions relevant to cellular growth: Photons
are absorbed by light-harvesting antennae, the phycobilisomes,
attached primarily to photosystem II (PSII). The energy derived
from absorbed photons drives water splitting at the oxygen-
evolving complex (OEC) and, via the photosynthetic electron
transport chain (ETC), results in the regeneration of cellular
ATP and NADPH. The ETC consists of a set of large protein
complexes, PSII, the cytochrome b6f complex (Cytb6f), photo-
system I (PSI), and ATP synthase (ATPase), embedded within
the thylakoid membrane. The uptake of nutrients, in particular
inorganic carbon, is described by simple uptake reactions and
only constrained by the abundance of the respective transporters.
Carbon cycling is not considered explicitly; the respective energy
expenditure is considered as part of general maintenance. Inor-
ganic carbon is assimilated via the Calvin–Benson cycle. The
product of the ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO), 3-phosphoglycerate, serves as a substrate for the
biosynthesis of cellular components, such as DNA, RNA, lipids,
pigments, glycogen, and amino acids. The amino acids synthe-
sized by the metabolic network serve as building blocks for struc-
tural, metabolic, photosynthetic, and ribosomal proteins. Key
aspects of the model are depicted in Fig. 1. For a brief synop-
sis of the model and its parameters see Materials and Methods.
The model encompasses a total of 465 macromolecules and 1,112
reactions, including 645 metabolic and exchange reactions and
616 metabolic genes, as well as 467 reactions describing the syn-
thesis of macromolecules.

Phototrophic Growth Is Autocatalytic. To implement the stoi-
chiometric and energetic dependencies of phototrophic growth,
the rate of each reaction within the model is constrained by
the abundances of the respective catalyzing macromolecules and
their respective catalytic efficiencies. In particular, at any point
in time, each metabolic reaction is constrained by the abun-
dances of its catalyzing enzymes (or enzyme complexes) and

their respective catalytic turnover numbers kcat. The latter val-
ues are sourced globally from databases (27, 28), as detailed in
Materials and Methods. Protein synthesis is limited by the abun-
dance of ribosomes and modeled according to general princi-
ples of peptide elongation, taking into account energy expendi-
ture (one ATP and two GTPs per amino acid) and consumption
of amino acids. Light absorption at PSII is constrained by the
reported effective cross-section of phycobilisomes and depends
on (variable) phycobilisome rod length (SI Appendix, Fig. S1).
Detachment of phycobilisomes from PSII reduces energy trans-
fer to the OEC. For simplicity, light absorption at PSI is assumed
to take place in the absence of phycobilisomes, using an effec-
tive cross-section per PSI complex, and energy spillover from
PSII is not considered (see SI Appendix for further discussion).
For the photosynthetic and respiratory ETCs, maximal catalytic
rates per protein complex are sourced from the literature and
listed in Materials and Methods. We note that the constraint-
based computational model only incorporates upper bounds for
the maximal rates of the respective reactions and processes.
The actual rates may be lower due to (unknown) fractional
saturation.

Describing Dynamic Resource Allocation. During a full LD cycle,
the capacity constraints induced by the abundances of catalyzing
macromolecules on reaction rates must be fulfilled at each point
in time. Catalyzing macromolecules, however, can be synthesized
de novo, depending on the availability of cellular resources (in
terms of energy and carbon precursors), and may increase over
time, and thereby increase the capacity of the respective reac-
tions. In the following, we denote the abundances of macro-
molecules (metabolic enzymes, transporters, photosynthetic and
respiratory protein complexes, phycobilisomes, and ribosomes)
at time t by the vector M (t). The elements of M (t) are time-
dependent quantities that are governed by the respective differ-
ential mass balance equations. That is, any change in abundance
is determined by the difference between synthesis and degrada-
tion reactions. We note that, in addition to the abundances of
catalyzing macromolecules, M (t) also contains the abundance
of a set of noncatalytic macromolecules. Noncatalytic macro-
molecules, such as DNA and nonmetabolic proteins, do not
constrain the capacity of any reaction within the model. Nonethe-
less, their synthesis is included as part of the energy expendi-
ture related to cellular growth and is enforced as an additional
constraint. See Materials and Methods for details. We are pri-
marily interested in diurnal dynamics, and hence a timescale
of several hours. Following the arguments of Rügen et al. (18)
and Waldherr et al. (25), we therefore assume that internal
metabolites are in quasi-steady state. The resulting computa-
tional model then consists of the stoichiometric network recon-
struction, the synthesis reactions for cellular macromolecules,
and the abundance constraints for noncatalytic macromole-
cules, as well as the capacity constraints induced by the ele-
ments of M (t).

Implementing the Constraint-Based Model. Using the computa-
tional model, we seek to identify solutions such that the timing
and amount of synthesis reactions give rise to the highest possi-
ble growth rate over a full diurnal cycle. To this end, the model is
supplemented with periodic boundary conditions for the macro-
molecules of the form

M (t0 + 24h) = µ ·M (t0), [1]

where t0 is the initial time and µ is the multiplication factor
corresponding to growth. The periodic boundary condition in
Eq. 1 represents balanced growth in a periodic environment: We
assume stationary diurnal experimental conditions, such that the
average measured cellular composition per unit biomass after
a full diurnal period is invariant. Eq. 1, in conjunction with
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Fig. 1. An autocatalytic computational growth model of S. elongatus PCC 7942. Energy and reducing agents are derived from the photosynthetic light
reactions and drive the fixation of inorganic carbon via the Calvin–Benson cycle, as well as the subsequent synthesis of cellular macromolecules. The
synthesis of precursors required for the assembly of macromolecules is described using a genome-scale stoichiometric reconstruction. The capacity of each
metabolic reaction depends on the availability of the respective catalyzing enzymes. Enzymes are translated using their constituent amino acids; amino
acids are themselves the products of metabolism. The abundances of all macromolecules relevant to cellular growth (metabolic enzymes, transporters,
photosynthetic and respiratory protein complexes, phycobilisomes, and ribosomes) are time-dependent quantities that are governed by the respective
differential mass balance equations. The time-dependent synthesis of cellular macromolecules constitutes a global resource allocation problem: We seek
to identify the timing and amount of intracellular synthesis reactions such that the limiting resources are allocated to give rise to maximal growth over
a full diurnal cycle. CET, cyclic electron transport; Cyt, cytochrome; FNR: ferredoxin–NADP+ reductase; NDH, NADPH dehydrogenase; OEC, oxygen-evolving
complex; PQ, plastoquinone; RTO, respiratory terminal oxidase; SDH, succinate dehydrogenase.

the computational model and the objective to maximize growth
in the form of the multiplication factor µ−→max, defines a
self-consistent resource allocation problem for diurnal photo-
trophic growth of the cyanobacterium S. elongatus PCC 7942. To
implement the problem, time is discretized using a Gauss implicit
method (midpoint rule). After discretization of time, the prob-
lem is transformed into a sequence of linear optimization prob-
lems and solved to global optimality using a binary search. See
Materials and Methods and SI Appendix for details about the com-
putational methods.

We emphasize that we impose no further ad hoc constraints
on the timing and amount of synthesis reactions. Likewise, our
computational framework does not presuppose any knowledge
of cellular regulatory mechanisms. Rather, and characteristic
for constraint-based optimization, the solution is solely obtained
based on the assumption that metabolism and macromolecular
synthesis are organized such that the timing and amount of cel-
lular synthesis reactions maximize growth in the form of the mul-
tiplication factor µ−→max. We note that the elements of M
at time t0 are themselves an outcome of the resource alloca-
tion problem and not specified externally (except for noncatalytic
macromolecules). In addition to the stoichiometric information
required to construct the computational model, the only kinetic
parameters are the catalytic efficiencies of enzymes, enzyme
complexes, and other catalytic macromolecules. We argue that
reasonable approximations of these quantities exist for almost
all cellular macromolecules. Using this narrow and well-defined
set of assumptions and parameters, we seek to derive the emer-
gent properties of diurnal phototrophic growth. For details of the
implementation and a discussion of the limits of applicability see
Materials and Methods and SI Appendix.

Results
Growth Under Constant Light. Before evaluating diurnal dynam-
ics, we investigate light-limited growth under constant light. Our
aim is to compare the results to conventional flux balance anal-
ysis (FBA) and thereby to verify the consistency of the model.
Solving the global resource allocation problem, we obtain the
multiplication factor µ and the growth rate λ= log(µ)/24h as
a function of the light intensity, as well as the cellular composi-
tion for different growth rates. Key results are shown in Fig. 2.
To compare model properties with previous results obtained
using conventional FBA, we use a reference light intensity
I =150µmol of photons s−1·m−2 resulting in the absorption of
15.9mmol of photons per gram dry weight (gDW) per hour, a
growth rate of λ=0.03 h−1 (multiplication factor µ≈ 2), and
an oxygen evolution rate of 1.92mmol·gDW−1·h−1. These val-
ues are in quantitative agreement with values previously esti-
mated using FBA (13, 14). In particular, performing a con-
ventional FBA on the metabolic reconstruction of S. elongatus
PCC 7942 using a static biomass objective function (BOF) and
a light uptake of 15.8mmol of absorbed photons gDW−1·h−1

results in an oxygen evolution rate of 1.92mmol·gDW−1·h−1

and a growth rate of λ=0.03 h−1. We note that quanti-
tative agreement between results obtained from the global
resource allocation problem and conventional FBA cannot be
expected a priori, as the former are also based on capacity con-
straints induced by kinetic parameters (the catalytic efficien-
cies) whose values are globally sourced from databases (Model
Construction). In contrast to the static preassigned BOF used
in FBA, the cellular composition of the autocatalytic model is
an emergent result of the global resource allocation problem
(Fig. 2D). The allocated abundance of catalytic macromolecules
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Fig. 2. Model properties obtained for balanced growth under constant
light. (A) The maximal growth rate λ as a function of light intensity. The
growth rate λ is consistent with a Monod growth law (see also SI Appendix,
Fig. S2). (B) Oxygen evolution as a function of the growth rate λ. (C) Ribo-
some content per cell as a function of the growth rate λ, assuming a cell dry
mass of 1.5 pg. (D) The cellular composition for a light intensity of 150 µmol
of photons m−2·s−1.

is in quantitative agreement with previously reported BOFs
(13, 14).

Adaptations to Different Light Intensities. When solving the com-
putational model for different (but constant) light intensities, the
growth rate, as well as the oxygen evolution rate, increases with
increasing light intensity (Fig. 2 A and B). We note that the ratio
between light intensity and absorbed photons depends on the
assumed maximal effective cross-section of PSII, reported to be
σPSII≈ 1 nm2 (29). The results shown in Fig. 2A indicate that
the reported value significantly underestimates the actual effec-
tive cross-section (with no further impact on model results; see
also SI Appendix). Similar to results obtained for models of het-
erotrophic growth (1, 2, 7), the relative amount of ribosomes lin-
early increases with increasing growth rate (Fig. 2C). We observe
that growth as a function of light saturates at a growth rate of
λmax =0.1281 h−1 (multiplication factor µ≈ 18, doubling time
TD ≈ 5.4 h), estimated using a Monod growth equation (Fig.
2A). The maximal doubling time obtained from the autocatalytic
model is therefore slightly lower but still within the range of
the fastest published doubling time of S. elongatus PCC 7942,
reported as TD =4.9 h± 0.7 h (λ≈ 0.14 h−1) by Yu et al. (30).

Sensitivity Analysis. Because the computational model primarily
provides an upper bound for the maximal specific growth rate,
we performed a sensitivity analysis of growth rate as a function
of estimated parameters, in particular with respect to the cat-
alytic efficiencies kcat. Although the sensitivity with respect to the
catalytic efficiencies of individual enzymes is low (SI Appendix,
Figs. S3–S5), a major determinant of maximal growth rate is
the assumed ratio of noncatalytic proteins (SI Appendix, Figs.
S6–S7). These proteins fulfill no immediate catalytic role within
our model, and their synthesis is enforced with a fixed quota
relative to catalytic proteins (Materials and Methods). Based on
recent proteomics data for slow-growing cells of S. elongatus
PCC 7942 (31), the relative quota of noncatalytic proteins was
determined to be 55% of total protein mass. No experimen-
tal estimates exist for fast-growing cells. If the true ratio for
fast-growing cells is assumed to be ∼ 20%, the resulting growth
rate is λmax ≈ 0.20 h−1, corresponding to a doubling time of

TD = 3.5 h, and slightly exceeding the reported maximal growth
rate of S. elongatus PCC 7942.

A Day in the Life of S. elongatus PCC 7942. Going beyond con-
stant light conditions, our main interest is a solution of the global
resource allocation problem for diurnal light. The light inten-
sity is modeled as a sinusoidal half-wave with a peak value of
600µmol of photons s−1·m−2, except as otherwise noted. The
computational objective is to maximize growth in the form of
the multiplication factor µ→ max in Eq. 1, as detailed in Model
Construction. We seek to identify a time-dependent flux pattern
(or patterns) that maximizes the overall growth of the cell dur-
ing a diurnal cycle. Growth rates and overall cellular composition
(shown in SI Appendix, Fig. S8) depend on the peak light inten-
sity; the results (SI Appendix, Figs. S9 and S10) are qualitatively
similar to the case of constant light already depicted in Fig. 2.
The numerical results are robust with respect to (small) changes
in parameters. Fig. 3 shows the resulting metabolic flux pattern
for a reference day as a function of diurnal time (Fig. 3A), and
the relative flux values normalized to the RuBisCO carbon fixa-
tion flux (Fig. 3B), as well as selected examples of fluxes corre-
sponding to different functional categories (Fig. 3C).

The solution of the global cellular resource allocation problem
exhibits a highly coordinated metabolic activity over a diurnal
period: Oxygenic photosynthesis is active during the light period.
Inorganic carbon is imported and assimilated via the Calvin–
Benson cycle (anabolism); respiratory components (catabolism)
are active during the dark period. We highlight two results
from the computational model. First, we observe that growth
is dynamic. The instantaneous growth rate follows a specific
pattern over the light period. The growth rate is low in the
early morning, increases over the course of the light period, and
decreases again toward dusk (SI Appendix, Fig. S11). Such a
dynamic growth rate over a diurnal cycle was recently reported
for the cyanobacterium Synechocystis sp. PCC 6803 (32), and is
also observed when the sinusoidal light input is replaced by a
square-wave LD cycle that is typically used in experiments (SI
Appendix, Fig. S11). Second, we observe that growth is exclusive
to the light period. During the night phase, glycogen is mobi-
lized and used for cellular maintenance, serving as a substrate
for cellular respiration via the oxidative pentose phosphate path-
way (OPPP) and ultimately cytochrome C oxidase. Although this
observation is unsurprising given the known data on S. elongatus
7942 and other (nonnitrogen fixing) cyanobacteria, we empha-
size that cessation of metabolic activity during darkness is not
self-evident but is already the result of a cellular trade-off: Lim-
ited metabolic activity at night implies that available enzymatic
and ribosomal capacity is not used during the night, resulting in
idle enzymatic capacity. To avoid or reduce the timespan of such
idle capacity would require the synthesis of additional storage
compounds before the dark period. Increased storage synthesis,
however, entails additional enzymatic costs for the synthesis and
utilization of glycogen. To demonstrate this trade-off, we con-
ducted an in silico experiment using an artificially reduced cost
for the enzymatic capacity required for glycogen synthesis and
utilization. The synthesis costs of the respective enzymes were
neglected. In this case, cellular synthesis also prevails during the
night phase, driven by an increased amount of stored glycogen
at dusk (SI Appendix, Fig. S12). The in silico simulation experi-
ment, however, also reveals that the amount of necessary addi-
tional storage capacity is significant: The high storage require-
ments explain why such behavior is not observed for the original
parameters.

Metabolite Partitioning During Diurnal Growth. The results
obtained from the global resource allocation problem can be
compared with known experimental observations about metabo-
lite partitioning during diurnal growth. Although no 13C flux
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Fig. 3. A solution of the time-dependent resource allocation problem over a full diurnal cycle. (A) Metabolic fluxes as a function of diurnal time. All fluxes
are normalized to the unit interval. To indicate the periodicity of the solution, the beginning of the subsequent light period is also shown (hours 24 to
30). The global cellular resource allocation problem gives rise to a highly coordinated metabolic activity over a diurnal period. Metabolism is organized
into distinct temporal phases, ranging from synthesis of amino acids and pigments, to synthesis of lipids, DNA/RNA, and peptidoglycan, to synthesis of
cofactors. The functional category of each flux is indicated by a black bar in the table adjacent to the plot. (B) Excerpt of the light period. The flux values
are normalized to the carbon fixation flux (RuBisCO) and scaled to the unit interval. Ordering is identical A. Normalization to RuBisCO flux emphasizes
relative carbon partitioning rather than the dependence of metabolic fluxes on total light input. (C) Selected metabolic fluxes and their corresponding
enzymatic capacity bounds. Dashed red lines indicate the respective enzymatic capacities (proportional to enzyme amount). Photosynthesis and reactions
of central metabolism closely follow light availability, as exemplified by the reactions of the Calvin–Benson cycle (e.g., transketolase TKL) and the ETC (e.g.,
PSII). Metabolic activity during the early light period is dominated by amino acid synthesis. Shown is DA7-P for the synthesis of aromatic amino acids,
the associated nitrate uptake (NITTR), and synthesis of pigments (e.g., GTRR toward chlorophyll). At later times, metabolic activity shifts to DNA and RNA
synthesis (e.g., purine synthesis by 5PRPPAT) and lipid synthesis (e.g., OAAS), followed by the synthesis of peptidoglycan (e.g., GF6PAT) and cofactors (such
as L-Asp-O toward nicotinamide adenine dinucleotide). During the night, glycogen is used via the glycogen phosphorylase (GP). We note that synthesis
of enzymes can significantly precede reaction flux (see subplot for GP). Abbreviations are as follows: DAH7-P synthase, 3-deoxy-D-arabino-heptulosonate
7-phosphate synthetase; GP, glycogen phosphorylase; AO, aspartate oxidase; GF6PAT, glucosamine-fructose-6-phosphate aminotransferase; NITTR, nitrate
transporter; THG, transhydrogenase; 5PRPPAT, 5′-phosphoribosylpyrophosphate amidotransferase; GTRR, glutamyl-tRNA reductase; OAAS, 3-oxoacyl-ACP
synthase; and TKL, transketolase.

measurements over a full diurnal cycle have been conducted yet,
several studies have investigated the transcriptome, proteome,
and physiology of S. elongatus PCC 7942 and other cyanobacte-
ria over a full 24-h diurnal cycle (9, 31, 33, 34). Published tran-
scriptome studies of cyanobacteria typically show global rhythms
in gene expression, including a significant reduction of the
transcriptional output during the dark period (33, 35, 36).
Although environmental LD cycles are sufficient to drive tran-
scriptional and metabolic rhythms, metabolic rhythms are also

influenced by the cyanobacterial circadian clock and persist in
(previously entrained) cultures under constant light (9, 37, 38).
Several transcriptomic studies described a broad temporal order
of diurnal growth, typically distinguishing between genes peak-
ing at dawn versus genes peaking at dusk (9, 35). The former
set includes genes associated with the Calvin–Benson cycle, as
well as genes associated with amino acid synthesis; the latter set
includes genes associated with glycogen mobilization and OPPP
(9). The observed temporal order is consistent across different
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cyanobacterial strains: For the cyanobacterium Synechocystis sp.
PCC 6803, Saha et al. (34) report an upregulation of PSI and PSII
transcripts, genes for amino acid metabolism, and genes from
the Calvin–Benson cycle at the beginning of the light period,
whereas essential genes for glycogen catabolism showed upreg-
ulation in the dark period. Behrenfeld et al. (39) report that
metabolism is dominated by amino acid synthesis between sun-
rise and noon in a synchronized culture of Prochlorococcus
(strain PCC 9511).

The computational results of the global resource allocation
problem, shown in Fig. 3, closely replicate this temporal order:
Metabolism at dawn is dominated by amino acid synthesis and
synthesis of pigments. Photosynthetic activity and reactions of
central metabolism closely follow light availability. Later within
the light period, metabolic activity shifts to DNA and RNA
synthesis, lipid synthesis, and the synthesis of peptidoglycan
and cofactors. We note that synthesis of enzymes can pre-
cede reaction flux, for example, for the glycogen phosphory-
lase (plot GP in Fig. 3C). Overall, the differences in activity
between light and dark metabolism, as well as the initiation
of amino acid metabolism at dawn, and storage metabolism
(see The Dynamics of Glycogen Accumulation), are in quali-
tative agreement with reported metabolite partitioning during
diurnal growth. Nonetheless, we must note that several caveats
limit a direct comparison of individual reaction rates to cur-
rently available data. Current transcriptomics data are predomi-
nantly measured under constant light conditions using previously
entrained (synchronized) cultures. Such measurements are moti-
vated by the aim to discern the effects of the circadian clock
versus light-driven regulation and conceal actual resource alloca-
tion. Furthermore, gene expression is not necessarily indicative
of metabolic flux. Measurements also typically involve slow-
growing cultures, with reduced requirements for de novo protein
synthesis. Correspondingly, proteomics measurements typically
exhibit strongly reduced diurnal variability (31, 40) compared
with transcriptomics data. The qualitative agreement of results
obtained from the computational model with transcriptomics
data may therefore provide further incentives for experimental
studies to focus on de novo protein synthesis in fast growing cul-
tures, and thereby to enable a quantitative comparison of the
timing of protein synthesis with predictions obtained from mod-
els of cellular resource allocation.

The Dynamics of Glycogen Accumulation. Glycogen is the main
storage compound in cyanobacteria. Cells accumulate glycogen
during the light phase and mobilize it as a source of carbon
and energy during the night. It was recently shown that the
timing of glycogen accumulation is under the tight control of
the cyanobacterial circadian clock, and disruption of the clock
results in altered glycogen dynamics (9). We therefore investi-
gate the dynamics of glycogen accumulation in the context of
the global resource allocation problem. We note that our sim-
ulation does not impose any ad hoc constraints on the kinet-
ics and timing of glycogen synthesis. Rather, accumulation of
glycogen is a systemic property that emerges as a consequence
of optimal resource allocation. Fig. 4 shows the time course of
glycogen accumulation obtained from the global resource alloca-
tion problem over a diurnal period, as well as the predicted car-
bon partitioning ratio during the light period. After a brief lag
phase at dawn, stored glycogen increases linearly within the light
period and peaks at dusk. The constant rate of glycogen accu-
mulation through the light period is in excellent agreement with
recent data from S. elongatus PCC 7942 (9) and Synechocystis sp.
PCC 6803 (34). To verify the robustness of our approach, and
because most experimental studies use a square-wave light inten-
sity rather than a sinusoidal function, we also investigate glyco-
gen accumulation using a square-wave light function, resulting in
a similar functional form (SI Appendix, Fig. S13). We emphasize

Fig. 4. Timing and dynamics of glycogen accumulation over a full diurnal
cycle. After a brief lag phase, cells accumulate glycogen during the light
period and mobilize it as a source of carbon and energy during the night.
The model makes no assumptions about the specific timing and amount of
glycogen accumulation. Rather, glycogen accumulation emerges as a trade-
off between conflicting objectives. Shown are absolute amounts of stored
glycogen per gram dry weight, as well as the carbon partitioning. Carbon
partitioning is defined as the ratio, on a per carbon basis, between the flux
toward glycogen synthesis and the carbon assimilation (RuBisCO) flux.

that the linear slope is not self-evident but emerges as a trade-off
between at least two conflicting objectives: (i) minimizing car-
bon withdrawal during the early growth period when assimilated
carbon could rather be used to increase enzymatic and riboso-
mal capacity versus (ii) minimizing enzymatic capacity for stor-
age (glycogen) synthesis. The former objective favors withdrawal
of carbon late during the light period, whereas the latter objec-
tive favors constant withdrawal throughout the light period using
a glycogen synthesis pathway with low capacity. To the best of our
knowledge, the initial lag phase has not yet been noted experi-
mentally, but might provide a stimulus for further experimental
evaluation.

Glycogen Accumulation for Variable Day Lengths. To highlight
glycogen accumulation as a systemic property, we also investi-
gate the minimal amount of accumulated glycogen for different
photoperiods. Fig. 5A shows the resulting time courses for differ-
ent lengths of day versus night periods. Fig. 5B shows the mini-
mal amount of glycogen required at the end of the light period.
The overall form of glycogen accumulation remains largely iden-
tical. We note, however, that the amount of glycogen required
at dusk exhibits a certain plasticity. First, if the night period is
doubled, slightly less than twice the glycogen is required to sus-
tain night metabolism. Second, although the minimal amount
of glycogen required at dusk exhibits a lower bound, cells can
accumulate more glycogen with no discernible effects on overall
growth yield. In this case, certain synthesis tasks, in particular,
lipid synthesis, can be relegated to the end of the night period,
thereby requiring less enzyme capacity during the day at the
expense of an increased glycogen storage at dusk (SI Appendix,
Figs. S14–S16).

Discussion
Phototrophic growth under diurnal conditions requires a pre-
cise coordination of metabolic processes, and the resulting
constraints and trade-offs are challenging to describe using
constraint-based analysis and conventional FBA (20). Here, we
have developed a genome-scale model that allowed us to investi-
gate the stoichiometric and energetic constraints of diurnal pho-
totrophic growth in the context of a global resource allocation
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Fig. 5. (A) Time courses of glycogen accumulation for different lengths
of the light period (day length). (B) Minimal glycogen requirements for
different day lengths. Peak glycogen content is always observed at dusk.
Although the minimal amount of glycogen required at dusk exhibits a lower
bound, cells can accumulate more glycogen with no discernible effects on
overall growth yield. Higher glycogen at dusk implies increased metabolic
activity shortly before dawn at the expense of slightly reduced synthesis
reactions during the light period.

problem. Building upon previous works (1, 6, 15, 18, 23, 25, 26),
our approach is based on the fact that growth is inherently auto-
catalytic: The cellular machinery to sustain metabolism is itself a
product of metabolism. Our foci have therefore been the net sto-
ichiometric and energetic implications of diurnal growth on the
de novo synthesis of proteins and other cellular macromolecules.
Our aim was an ab initio prediction of optimal diurnal resource
allocation: How are metabolism and the synthesis reactions of
cellular macromolecules organized over a full diurnal cycle?
What is the optimal timing of glycogen accumulation during the
light phase? From the perspective of cellular resource allocation,
these questions can be asked without detailed knowledge about
regulatory mechanisms and their corresponding kinetic parame-
ters. Rather, similar to conventional FBA (26), predictions are
obtained based on the assumption that the synthesis reactions of
metabolism are organized such that their timing and magnitude
result in maximal growth over a full diurnal cycle, motivated by
the fact that a similar optimization might have taken place during
evolution (11).

The results obtained from the computational model allowed us
to pinpoint several energetic trade-offs and constraints related
to diurnal growth. Overall, the model-derived time courses are
in qualitative agreement with previous experimental observa-
tions about flux partitioning in S. elongatus PCC 7942 and
other cyanobacteria: Growth is dynamic and takes place dur-
ing the light phase. Carbon fixation and the reactions of central
metabolism largely follow light availability. The synthesis reac-
tions for amino acids and pigments dominate metabolism during
the early light period, whereas other synthesis reactions peak at
later time points. In the absence of light, almost all metabolic
activity ceases, and cellular metabolism is dominated by respira-
tory activity.

Although well known experimentally, we emphasize that, in
the computational model, the cessation of metabolic activity dur-
ing darkness is a consequence of a trade-off between the cost of
unused enzymatic capacity during darkness and the cost of addi-
tional storage that would be required for synthesis reactions to
take place in the absence of light. In this respect, the function of
the storage compound glycogen is analogous to a cellular battery
or capacitor: We expect that, if glycogen synthesis and utilization
did not entail additional enzymatic (and other) costs, synthesis
reactions would continue during the night. Within our compu-
tational framework we tested this hypothesis using an in silico
experiment with modified enzyme synthesis costs.

For our reference parameters, the predicted timing character-
istics of glycogen accumulation did match recent experimental
observations (9, 34). The emergent dynamics of glycogen accu-

mulation also points to a role of the circadian oscillator to mod-
ulate metabolite partitioning during growth. It has been shown
recently that the circadian oscillator controls the timing of glyco-
gen accumulation such that accumulation occurs at a constant
rate through the light period and that a disrupted circadian clock
results in an increased glycogen accumulation early in the day
(9). The disrupted pattern of glycogen accumulation is, indeed,
significantly different from the optimal profile predicted here.
A manifest hypothesis is therefore that cyanobacterial growth
is organized according to a temporal program that evolved to
maximize growth in a periodic environment, and that the circa-
dian clock is a regulatory circuit that modulates the transcrip-
tional program of the cell to approach this metabolic optimum.
Misalignments between metabolism, clock, and environmental
cycles will therefore result in impaired growth, as has recently
been observed (10).

From a more general perspective, we consider our approach
to be a suitable framework to study metabolic optimality in
time-dependent and fluctuating environments. In this respect,
cyanobacterial phototrophic growth is an ideal test case because
the regular and periodic environmental changes allow us to
formulate the global resource allocation problem in a well-
defined way. As yet, similar efforts to investigate proteome
allocation have primarily focused on heterotrophic organisms
in time-independent environments (21, 24, 41). These recent
analyses reveal several interesting differences with respect to
our results. In particular, the model-derived (maximal) growth
rates for Escherichia coli corresponding to an optimally allo-
cated proteome were consistently higher than the experimen-
tally measured rates. In the model, the latter could be sup-
ported with 95% less proteome under certain conditions (21).
This finding was attributed to cellular “bet hedging” in (general-
ist) wild-type E. coli against unknown environmental challenges.
Furthermore, significant protein production without detectable
growth benefit was observed experimentally (21, 41). In con-
trast, the model-derived maximal growth rates reported here
were within the range of the (maximal) growth rates observed for
S. elongatus PCC 7942 [even though actual growth rates observed
in a laboratory are typically significantly slower (42)]. Because
the resource allocation problem only provides upper bounds for
the growth rate, based on the assumption of an optimally allo-
cated metabolism, and does not incorporate several detrimen-
tal factors, such as light damage and possible photoinhibition,
the close correspondence between observed and model-derived
values suggests that cyanobacterial metabolism operates close to
optimality, at least in experiments designed for rapid growth.

We emphasize that the model-derived maximal growth rates
should be interpreted as an order-of-magnitude approximation,
not as precise estimates. For example, a major unknown factor is
the relative amount of noncatalytic proteins, reported to be up to
55% of total protein for slow-growing cells (31). We hypothesize
that, for fast-growing cells, this percentage is considerably lower.
The impact of noncatalytic proteins as (condition-specific) niche-
adaptive proteins on the maximal growth rate was already dis-
cussed by Burnap (6). The question to what extent slow-growing
cyanobacteria perform cellular bet hedging similar to E. coli and
how the allocation of proteome to non-growth-related processes
correlates with resistance to adverse environmental and (sudden)
stress conditions remains a timely question for further research,
with implications for biotechnological strain design.

In future iterations, we anticipate that our computational
model can be significantly improved upon and is applicable
beyond the questions considered here. We envision a stoichio-
metric whole-cell model, with a focus on energetic constraints,
that allows us to assess the optimality of metabolic strategies
in diverse environments. Of particular interest are the energetic
implications of carbon cycling (43), light damage and its repair,
and the coupling of metabolic processes to the cell cycle, as
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well as the temporal segregation of incompatible metabolic pro-
cesses, such as nitrogen fixation in certain cyanobacteria (44).
We conjecture that global resource allocation models, together
with the methodology described here, will allow us to assess the
condition-dependent cost and benefit of individual genes (45) in
the context of a growing cell, and thereby facilitate the study of
metabolic adaptations and metabolic diversity of cyanobacteria
(46) with the ultimate aim of understanding the limits of pho-
totrophic growth in complex environments.

Materials and Methods
Constraint-Based Analysis and Metabolic Optimality. Constraint-based
methods, such as FBA, are highly successful computational tools for under-
standing the organization of microbial metabolism (11, 13, 14, 26). Their
predictive power is based on the fact that fluxes through enzymatic reac-
tions are not independent but are subject to mass balance constraints. Spe-
cific predictions are obtained by assuming the metabolic fluxes are orga-
nized such that they fulfill certain evolutionary optimality principles. The
most common optimality principle is to maximize a BOF. That is, FBA seeks
to identify a (steady-state) flux solution that maximizes the growth yield of
a cell by maximizing the synthesis flux toward a set of predefined biomass
components given by the BOF. Predictions are therefore not obtained based
on knowledge about cellular regulation but based on how metabolism
ought to adapt if the assumed evolutionary optimality principle holds. See
Westermark et al. (11) for a recent review. Along similar lines, our approach
seeks to maximize the growth yield of a cell over a full diurnal cycle by max-
imizing the multiplication factor µ → max in Eq. 1. In contrast to conven-
tional FBA, and following recent developments in constraint-based analysis
(18, 23–26), the capacity constraints of individual reactions are explicitly part
of the model.

Metabolic Network Model. All simulations are based on a genome-scale
conditional FBA (cFBA) model (18). The model is derived from a genome-
scale metabolic reconstruction of the cyanobacterium S. elongatus PCC 7942.
The reconstruction covers 616 genes and consists of 662 metabolic reactions
and 539 metabolites. The reconstruction process was analogous to previous
reconstructions (12, 14, 15). The original metabolic network reconstruction
is provided together with the simulation data in an online repository (see SI
Appendix for details).

Model Components and Their Role. The computational model consists of
three types of components: steady-state metabolites, noncatalytic compo-
nents, and components with catalytic function. The noncatalytic compo-
nents are denoted as “quota” components and fulfill no explicit catalytic
function within our model but are required for the functioning of the cell.
Their synthesis is enforced (using a fixed quota) and contributes to the over-
all energy and carbon expenditure of growth. We note that, different from
ME models (26), we do not aim for a mechanistic representation of processes
such as transcription, translation, or assembly of macromolecules. Rather,
we focus on overall energetic and stoichiometric constraints on diurnal time
scales of several hours. Faster processes are not considered.

Components with Catalytic Activity. Enzymes, ribosomes, and several other
macromolecules constitute components with catalytic function. For each of
these components, a synthesis reaction is implemented. Macromolecules
(e.g., photosystems) assemble once all constituent compounds (amino acids
or protein subunits) are available. All components are synthesized using
their molecular stoichiometry, as derived from the amino acid sequence.
Special attention is paid to the stoichiometries of the photosynthesis and
respiration complexes, such as the photosystems or the ATPase. The respec-
tive stoichiometries are listed in SI Appendix, Tables S1–S8. The amounts of
all components with catalytic activity are time-dependent quantities, and,
at each point in time, their amount provides an upper bound to the rates of
the reactions they catalyze. We impose no further constraints on the timing
of synthesis and abundance of catalytic macromolecules.

Capacity Constraints Imposed by Catalytic Macromolecules. Assuming that
a component (e.g., an enzyme) e catalyzes a reaction r, the model imple-
ments the capacity constraint

vr (t) ≤ Me(t) · kr
cate

, ∀t ≥ 0, [2]

where vr (t) denotes the flux through reaction r at time t, Me(t) denotes
the concentration of enzyme e at time t, and kr

cate
is the turnover number

of the enzyme e for reaction r. The capacity constraint provides an upper

bound for the flux through a reaction; the actual flux may be lower due to
incomplete saturation or cyclic flux (47). Although an approximation, the
upper bound in Eq. 2 is supported by a recent large-scale evaluation of
absolute metabolite concentrations in E. coli (48). The study showed that
the large majority of metabolite concentrations exceed the corresponding
KM values, often more than tenfold (with the notable exception of central
metabolism), indicating a trend toward saturation of most enzyme active
sites (48). In case several reactions are catalyzed by the same component or
enzyme, the sum of their fluxes, weighted by the turnover rates, is bound
by the enzyme amount. The capacity constraint holds analogously for all
macromolecules, including the components of the ETC and ribosomes.

Noncatalytic Quota Components. Main noncatalytic molecules, denoted as
quota components, are vitamins, several cofactors, lipids, cell wall, inor-
ganic ions, DNA, and RNA, as well as nonmetabolic proteins. These com-
ponents have to be produced at the same rate as catalytic proteins and
macromolecules, although they do not reinforce the autocatalytic cycle. We
enforce the synthesis of noncatalytic quota components by imposing an ini-
tial amount proportional to their fraction of the whole cell weight, and
we require balanced growth (Eq. 1). Noncatalytic (quota) proteins compete
with catalytic proteins for ribosomal capacity.

Steady-State Components. Turnover of metabolic reactions is considerably
faster than the de novo synthesis of proteins. Following earlier work (18, 25),
we therefore assume that internal metabolites are at quasi-steady state. The
concentrations of internal (nonexchange) metabolites are not explicitly rep-
resented in Eq. 1, and the metabolic network is assumed to be balanced at
all time points. Similar to conventional FBA, we neglect dilution by growth
of internal metabolites.

Turnover Rates. The turnover rates used in the capacity constraint Eq. 2
are sourced from the Braunschweig Enzyme Database (BRENDA) (27). We
computationally retrieved all wild-type values from all organisms for each
enzyme and assigned the median of the corresponding retrieved values as
the turnover number of the respective enzyme. For enzymes with no turnover
numbers available, we followed ref. 49 and assigned the median of all
retrieved turnover numbers. Turnover numbers for the seven macromolecules
of ETC were sourced from the primary literature and are listed in Table 1.
The ribosomal capacity is assumed to be 15 amino acids per second (55).

Maintenance Requirements. In addition to the processes explicitly included
within the model, cells have an additional energy expenditure, usually
denoted as “maintenance” in FBA models. Along similar lines, our model
includes a basal maintenance constraint that hydrolyzes ATP with a rate of
0.13 mmol·gDW−1·h−1.

Optimization Objective and Solving Routine. The objective of the resource
allocation problem is to maximize the multiplication factor µ→max in Eq.
1. The dynamic variables are discretized in time using the implicit mid-
point rule numerical scheme. Discretization yields a set of linear constraints
that, together with the steady-state, capacity, production, and balanced
growth constraints, form a quadratically constrained program (linear for any
given µ).

To obtain the optimal resource allocation that maximizes µ, a binary
search over the growth rate µ is performed, and, in each step, a new lin-
ear program is solved, as described in ref. 18. Biologically speaking, if the

Table 1. Parameters for the cFBA model

Compound Catalytic efficiency Ref.

PSI 500 s−1 50
PSII 1,000 s−1 50
NDH-1 130 s−1 51
Cytb6f 200 s−1 50
Cyt c oxidase 670 s−1 52
SDH 1,300 s−1 53
ATPase 1,000 s−1 54
Ribosome 15 amino acids/s 55
Enzymes Various 27, 28

Solving the global resource allocation problem requires knowledge of the
catalytic turnover numbers of macromolecules. All values are sourced from
the primary literature. Cyt, cytochrome; Cytb6f, cytochrome b6f complex.
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cell can grow at rate µ1 and at a rate µ2≥µ1, then it should also be able to
grow at any growth rate µc, with µ1≤µc ≤µ2. Thus, a binary search is an
appropriate algorithm.

From a numerical perspective, the linear programs solved within the
binary search are ill-conditioned. Even when the constraint matrices are
suitably scaled, standard commercial solvers cannot be used due to lack
of numerical precision. Instead, SoPlex (56–58), a more stable open-source
solver that can perform iterative refinement of the solution, has been used.
Further details of the implementation are provided in SI Appendix.
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